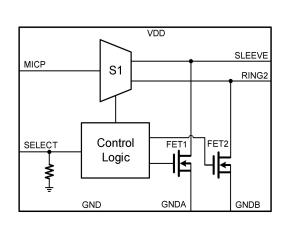


# GT4798

# Audio Headset Analog Switch with Reduced GND Switch Ron and FM Capability


| 1 Features                                   | 2 Application                  |
|----------------------------------------------|--------------------------------|
| - Ground FET Switches Ron: 70mΩ (TYP)        | - Mobile Phones                |
| - High Isolation Microphone Line Switches    | - Tablet PCs                   |
| - Supports FM Signal Transmission            | - Notebook/Ultrabook Computers |
| - Reduction of Click-Pop Noise               |                                |
| - Power Supply Voltage Range: 2.6V to 5.5V   |                                |
| - Total Harmonic Distortion(MIC): 0.01%(TYP) |                                |
| - Low Current Consumption: 2μA(TYP)          |                                |
| - Operation temperature range: -40°C to 85°C |                                |

#### 3 Description

The GT4798 is an audio headset analog switch that is used to detect 3.5mm accessories and switch SLEEVE and RING2 by external controller. The ground signal is routed through a pair of low-impedance ground FETs (70m $\Omega$  TYP), resulting minimal impact on audio crosstalk performance. The ground FETs of the device are designed to allow FM signal pass-through, making it possible to use the ground line of the headset as an FM antenna in mobile audio application.

The GT4798 operates over an ambient temperature range of -40°C to +85°C.

#### **Circuit Diagram**





# 4 Device Summary, Pin and Packages

Table 4-1. Device Summary<sup>(1)</sup>

| Serial Name | Part Name | Package | Body Size (Nom) | Marking <sup>(2)(4)</sup> | MSL(3) | Package Qty           |
|-------------|-----------|---------|-----------------|---------------------------|--------|-----------------------|
| GT4798      | GT4798WB9 | WLCSP-9 |                 | 4798<br>XXXX              | 3      | Tape and<br>Reel,3000 |

<sup>(1)</sup> For all available packages, please contact product.

REV0.1 1/7

<sup>(2)</sup> There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.

<sup>(3)</sup> MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

<sup>(4) &</sup>quot;XXXXX" in Marking will be appeared as the batch code.



# 4 Device Summary, Pin and Packages(Continued)

# Top View 1 2 3 VDD GNDB RING2 MICP GNDA SLEEVE SELECT NC GND C ( ) ( ) ( )

Fig.4-1. GT4798: WLCSP (WLCSP-9) Package

Table 4-2. Pin definition

| Pin | Name     | I/O | Description                                                          |  |  |  |
|-----|----------|-----|----------------------------------------------------------------------|--|--|--|
| A1  | $V_{DD}$ | -   | Supply Voltage.                                                      |  |  |  |
| A2  | GNDB     | -   | FET2 Ground Reference.                                               |  |  |  |
| A3  | RING2    | I/O | This pin will be routed to MICP or GNDB depending on the SELECT pin. |  |  |  |
| B1  | MICP     | I/O | Microphone signal connection to Codec.                               |  |  |  |
| B2  | GNDA     | -   | FE1 Ground Reference.                                                |  |  |  |
| B3  | SLEEVE   | I/O | This pin will be routed to MICP or GNDA depending on the SELECT pin. |  |  |  |
| C1  | SELECT   | I   | The logic signal used to control S1 switch, FET1 and FET2.           |  |  |  |
| C2  | NC       | -   | No connection.                                                       |  |  |  |
| C3  | GND      | -   | Ground.                                                              |  |  |  |

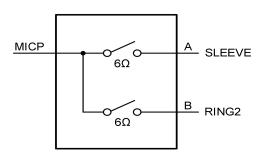



Fig.4-2. Audio Switch S1 MUX Detail

**Table 4-3. Function Table** 

| SELECT | Function                                        |  |  |  |  |
|--------|-------------------------------------------------|--|--|--|--|
| 0      | MICP = A = SLEEVE, FET2 turn on, FET1 turn off. |  |  |  |  |
| 1      | MICP = B = RING2, FET2 turn off, FET1 turn on.  |  |  |  |  |

REV0.1 2/7



#### 5 Voltage, Temperature, ESD and Thermal Ratings

#### 5.1 Absolute Maximum Ratings(1)

|                  | Parameters                                   | Min. | Max.                  | Unit |
|------------------|----------------------------------------------|------|-----------------------|------|
| V+               | Supply voltage range                         | -0.3 | 6.0                   | V    |
| V <sub>IN</sub>  | Analog, digital voltage range <sup>(2)</sup> | -0.3 | (V <sub>+</sub> )+0.3 | V    |
| TJ               | Junction temperature under bias              | -65  | 150                   | °C   |
| T <sub>stg</sub> | Storage temperature range                    | -65  | 150                   | °C   |

<sup>(1)</sup> Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### 5.2 ESD Ratings

|                       | E                       | Value                                 | Unit |   |
|-----------------------|-------------------------|---------------------------------------|------|---|
| V(ESD) Electrostation |                         | Human-Body Model (HBM) <sup>(1)</sup> | 8 K  | V |
|                       | Electrostatic discharge | Charged-Device Model (CDM)(2)         | 2 K  | V |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

#### 5.3 Recommended Operating Conditions(1)

Over operating free-air temperature range (unless otherwise noted)

| Symbol         | Parameter           | Min | Max | Units |
|----------------|---------------------|-----|-----|-------|
| V+             | Supply voltage      | 2.6 | 5.0 | V     |
| T <sub>A</sub> | Ambient temperature | -40 | 85  | °C    |

<sup>(1)</sup> All unused digital inputs of the device must be held at  $V_{\text{CC}}$  or GND to ensure proper device operation.

REV0.1 3/7

<sup>(2)</sup> The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



# **6 Electrical Specifications**

 $V_{+}$ =2.6V to 5.0V, Full= -40°C to +85°C, typical values are at  $V_{+}$  = 3.3V, TA=+25°C (unless otherwise noted)

| Parameter                         | Symbol                 | Conditions                                                                                                              | Temp  | Min | Тур  | Max | Units |  |
|-----------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|-----|------|-----|-------|--|
| Power Voltage Range               | V+                     |                                                                                                                         | +25°C | 2.6 |      | 5.0 | V     |  |
| Quiescent Current                 | lα                     | $V_+$ = 4.5V, $V_{MICP}$ = 1.8V to $V_+$ , SELECT = Low or High                                                         | +25°C |     | 2    | 5   | μΑ    |  |
| Input/Output Voltage Range        | V <sub>IO</sub>        | V+ ≤ 3.3V                                                                                                               | +25°C | 0   |      | V+  | V     |  |
| input/Output voltage Nange        | <b>V</b> 10            | V+ ≥ 3.3V                                                                                                               | +25°C | 0   |      | 3.3 | _ v   |  |
|                                   |                        | V <sub>+</sub> = 2.6V                                                                                                   | Full  | 1.3 |      | V+  |       |  |
| Input Logic High for SELECT       | V <sub>IH</sub>        | V+ = 3.3V                                                                                                               | Full  | 1.4 |      | V+  | V     |  |
|                                   |                        | V+ = 4.5V                                                                                                               | Full  | 1.5 |      | V+  |       |  |
|                                   |                        | V+ = 2.6V                                                                                                               | Full  | 0   |      | 0.3 |       |  |
| Input Logic Low for SELECT        | V <sub>IL</sub>        | V <sub>+</sub> = 3.3V                                                                                                   | Full  | 0   |      | 0.4 | V     |  |
|                                   |                        | V <sub>+</sub> = 4.5V                                                                                                   | Full  | 0   |      | 0.5 |       |  |
| Pull Down Resistor of SELECT pin  | R <sub>PD</sub>        |                                                                                                                         | +25°C |     | 600  |     | kΩ    |  |
|                                   |                        | Switch Resistance                                                                                                       | ·     |     |      |     |       |  |
| FET1 On Resistance                | R <sub>F1</sub>        | V <sub>+</sub> = 2.6V, V <sub>GND</sub> = 0V, I <sub>GND</sub> = 10mA                                                   | +25°C |     | 70   | 105 | mΩ    |  |
| FET2 On Resistance                | R <sub>F2</sub>        | V+ - 2.0V, VGND - 0V, IGND - 10111A                                                                                     | +25°C |     | 70   | 105 | 11152 |  |
| S1 On Resistance (Closed to A)    | R <sub>S1A</sub>       | $V_{+} = 2.6V$ , $V_{SLEEVE/RING2} = 0V$ to 2.6V,                                                                       | +25°C |     | 5    | 7.5 |       |  |
| S1 On Resistance (Closed to B)    | R <sub>S1B</sub>       | I <sub>MIC</sub> = ±10mA                                                                                                | +25°C |     | 5    | 7.5 | Ω     |  |
|                                   | - <b>:</b>             | Switch Leakage Current                                                                                                  | •     |     |      |     | •     |  |
| FET1, FET2 off Leakage Current    | I <sub>FET(OFF)</sub>  |                                                                                                                         |       |     |      | 1   |       |  |
| S1A, S1B Off Leakage Current      | I <sub>S1AB(OFF)</sub> | $V_{+} = 5.5V$ , $V_{IN} = 0V$ to 3.3V, $V_{OUT} = 0V$ , SELECT = 0 to 5.5V                                             | +25°C |     |      | 1   | μA    |  |
| S1A, S1B On Leakage Current       | I <sub>S1AB(ON)</sub>  |                                                                                                                         | +25°C |     |      | 1   |       |  |
|                                   |                        | Switch Dynamic Characteristics                                                                                          | •     |     |      |     | •     |  |
| FET1 Bandwidth                    | BW <sub>F1</sub>       | R <sub>L</sub> =50Ω, C <sub>L</sub> =5pF                                                                                | +25°C |     | 100  |     | NALL- |  |
| FET2 Bandwidth                    | BW <sub>F2</sub>       | V <sub>G</sub> =0, R <sub>G</sub> =0, C <sub>L</sub> =1nF                                                               | +25°C |     | 100  |     | MHz   |  |
|                                   |                        | $V_{+} = 2.6V$ , $V_{AC} = 200 m V_{PP}$ , $V_{DC} = 0V$ , $f = 217 Hz$ , $R_{S} = R_{L} = 600 \Omega$                  | +25°C |     | 100  |     |       |  |
|                                   |                        | $V_{+}$ = 2.6V, $V_{AC}$ = 200m $V_{PP}$ , $V_{DC}$ = 0V, f = 1kHz, $R_{S}$ = $R_{L}$ = 600 $\Omega$                    | +25°C |     | 90   |     |       |  |
| Power Supply Rejection            | PSRR                   | $V_{+} = 2.6V$ , $V_{AC} = 200 m V_{PP}$ , $V_{DC} = 0V$ , $f = 20 k Hz$ , $R_{S} = R_{L} = 600 \Omega$                 | +25°C |     | 65   |     | dB    |  |
| Towar Supply Rejection            | TORK                   | $V_{+} = 5V$ , $V_{AC} = 200 \text{mV}_{PP}$ , $V_{DC} = 0V$ , $f = 217 \text{Hz}$ , $R_{S} = R_{L} = 600 \Omega$ +25°C |       |     | 100  |     | d b   |  |
|                                   |                        | $V_{+} = 5V$ , $V_{AC} = 200 \text{mV}_{PP}$ , $V_{DC} = 0V$ , $f = 1 \text{kHz}$ , $R_{S} = R_{L} = 600 \Omega$        | +25°C |     | 95   |     |       |  |
|                                   |                        | $V_{+} = 5V$ , $V_{AC} = 200 \text{mV}_{PP}$ , $V_{DC} = 0V$ , $f = 20 \text{kHz}$ , $R_{S} = R_{L} = 600 \Omega$       | +25°C |     | 70   |     |       |  |
| SLEEVE or RING2 to MICP isolation | ISO <sub>S1</sub>      | $V = 200 \text{mV}_{PP}, f = 20 \text{kHz}, R_L = 50 \Omega$                                                            | +25°C |     | -110 |     | dB    |  |
| SLEEVE to RING2 Separation        | SEP <sub>S1</sub>      | $V = 200 \text{mV}_{PP}, f = 20 \text{kHz}, R_L = 50 \Omega$                                                            | +25°C |     | -110 |     | ub    |  |
| Total Harmonic Distortion         | THD                    | $V = 200 \text{mV}_{PP}, \text{ f} = 20\text{-}20 \text{kHz}, \text{ R}_{S} = 50 \Omega, \\ \text{BW} = 80 \text{kHz}$  | +25°C |     | 0.01 |     | %     |  |
|                                   |                        | Dynamic Characteristics                                                                                                 |       |     |      |     |       |  |
| Turn-on Time                      | ton                    |                                                                                                                         | +25°C |     | 105  |     |       |  |
| Turn-off Time                     | toff                   |                                                                                                                         | +25°C |     | 50   |     | ns    |  |
| Break-Before-Make Time Delay      | t <sub>D</sub>         |                                                                                                                         | +25°C |     | 15   |     |       |  |

REV0.1 4/7



# 7 Typical Characteristics

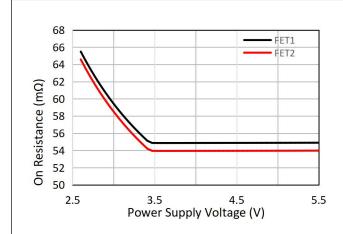
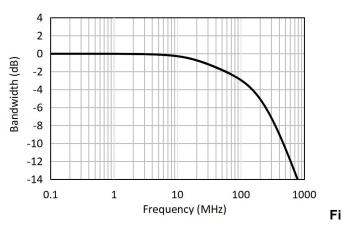




Fig.7-1. On Resistance vs Power Supply Voltage



g.7-2. Bandwidth vs Frequency

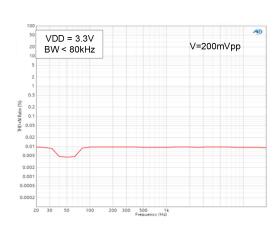
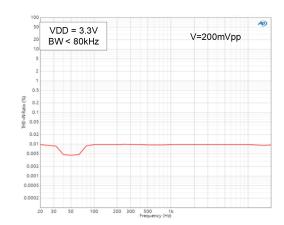
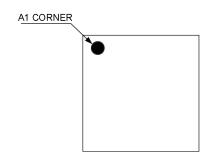
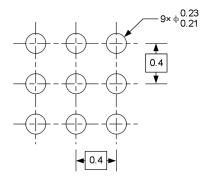


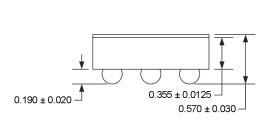

Fig.7-3. THD+N vs. Frequency (SLEEVE)

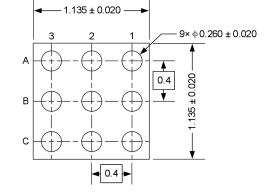





Fig.7-4. THD+N vs. Frequency (RING2)



# 8 Package Outline Dimension


#### WLCSP-9



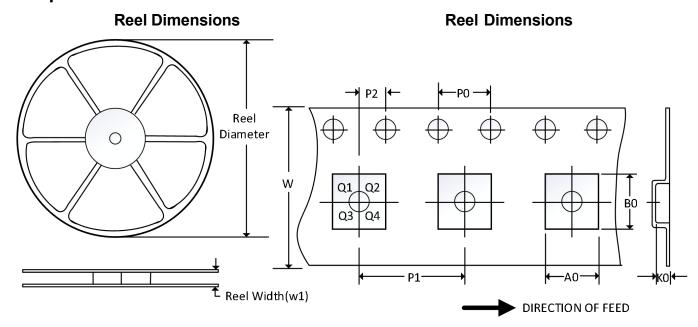



**TOP VIEW** 

**RECOMMENDED PATTERN** 






**SIDE VIEW** 

**BOTTOM VIEW** 

7/7



# 9 Tape and Reel Information



NOTE: The picture is only for reference. Please make the object as the standard.

#### **Key Parameter List of Tape and Reel**

| Package Type | Reel<br>Diameter | Reel<br>Width(m<br>m) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P0<br>(mm) | P1<br>(mm) | P2<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|------------------|-----------------------|------------|------------|------------|------------|------------|------------|-----------|------------------|
| WLCSP-9      | 7"               | 9.5                   | 1.27       | 1.27       | 0.67       | 4          | 4          | 2          | 8         | Q1               |

#### NOTE:

- All dimensions are nominal.
   Plastic or metal protrusions of 0.15mm maximum per side are not included.

REV0.1